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Abstract-The present investigation is focused on the two-dimensional, transient behavior of convective 
heat transfer in porous, rectangular ducts saturated with a fluid and in which there is uniform internal hear 
generation. In earlier works the steady-state multiplicity features of this flow have been studied. In the 
present work the evolutionary path to such steady states is examined. In several cases, a sustained oscillatory 
behavior has been observed. The solution structure is governed by two parameters, namely the aspect ratio 
of the duct, y = b/a and the Rayleigh number, R = KBgnA’QJavk. For a duct with an aspect ratio of 
unity, a complicated solution structure is observed upon increasing the dynamical parameter. A steady, 
symmetric two-cell pattern observed for R of up to 4400 gives way to a periodic regime for R of up to 
5400, then to a chaotic regime over a narrow range of R and a return to a steady-state solution at R = 5800. 
Upon increasing y to 8, several multiple steady-state solutions are observed. The transition to oscillatory 
convection occurs at an earlier value of R with increasing y. None of the oscillatory solutions are symmetric 

about the center line. 

INTRODUCTION 

CONVECTIVE heat transfer in fluid-saturated porous 
media has been studied extensively since the early 
analysis by Lapwood [l]. Several studies have focused 
on the dynamical behavior of such systems, namely the 
bifurcation character of the stationary solutions [2], 
the evolution of oscillatory patterns [3] and the route 
to chaotic flows [4] in such systems. A purely natural 
convection state, driven by buoyancy, can be 
generated by heating from the boundary. Both bottom 
heating and side heating are of interest in studying 
thermal insulation systems. Convective heat transfer 
in porous media is also of importance in areas such 
as geothermal engineering, enhanced oil recovery 
although the transport processes are much more com- 
plicated due to the multiphase nature of the flow. A 
convective state generated and sustained by internal 
heat generation in a porous medium is also of interest 
in packed bed reactors, underground disposal of 
radioactive waste material, etc. An extensive review 
of these works can be- found in Combamous and 
Bories [S] and Cheng [6]. 

Most of these works are based on Darcy’s model 
for the flow and an averaged, single-equation model 
for the energy equation with the Boussinesq approxi- 
mation for the density variation. Issues concerning 
the adequacy of the model itself in describing the 
convective heat transfer processes in porous media 
have been examined only recently. Chan and Banerjee 
[7] have studied the transient three-dimensional 
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natural convection using a two-equation model with 
a finite resistance between the fluid and the solid in 
describing the heat transfer process. Other effects such 
as the importance of inertia at high flows, the effect 
of variable porosity particularly near the boundary, 
etc. have been examined recently in both pure natural 
convection [8] and pure forced convection [9] systems. 

For the natural convection case, the effect of tilt 
angle on the onset of convective state and on the 
multiplicity of two-dimensional, steady-state solu- 
tions has been studied by Kaneko et al. [IO] and by 
Moya et al. [II], respectively. Similar results for the 
mixed convection state or for natural concection with 
internal heat sources have been obtained by Islam 
and Nandakumar [l2], Buretta and Berman [l3], 
Tveitereid [ 141, Poulikakos [IS] and Schulenberg and 
Miiller [l6]. Buretta and Berman [I31 have presented 
experimental evidence of multiple steady-state solu- 
tions beyond a certain Rayleigh number. Tveitereid 
[14] has presented a stability analysis of the same 
problem and has shown that steady two-dimensional 
rolls and hexagons are possible solutions to the 
governing equations. Both Schulenberg and Mtiller 
[16] and Poulikakos [ 151 have presented numerical 
results of two-dimensional convection in an internally 
heated, saturated porous layer which is superposed 
with a layer of pure liquid on top. The former con- 
sidered only Darcy’s equations for the flow model 
while the latter has included the Brinkmann (bound- 
ary effect) and Forchheimer (inertial effect) modi- 
fications to the equations of motion. The convective 
effects of thermal ignition in porous media have been 
examined by Kordylewski and Krajewski [l7] and 
Gatica et al. [18]. In this variation the rate of internal 
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NOMENCLATURE 

width of the proous medium 
cross-sectional area of the duct 
height of the porous medium 
circumference of the duct, 4(a + b) 
specific heat 
hydraulic diameter, 4ab/(a + 6) 
acceleration due to gravity 
effective thermal conductivity of the 
medium 
permeability of the medium 
Nusselt number, equation (10) 
pressure 
volumetric rate of heat generation 
Rayleigh number, (KBSaA’QJavk 
time 
dimensional temperature averaged over a 
representative elementary volume 
velocity components in x, I’, respectively 
coordinate directions. 

P coefficient of thermal expansion 

Y aspect ratio of the geometry, b/a 
e dimensionless temperature, 

(T- T,)~OOI(Q,AIk) 
1 Rayleigh number, a dynamical parameter, 

R/100 

IJ viscosity of the fluid 
V kinematic viscosity of fluid 

P density of the fluid 
0 ratio of specific heats 
r dimensionless time, t’/(oa2/a) 
Y stream function. 

Superscript 
I dimensional quantity. 

Subscript 
b bulk property, e.g. bulk temperature, B,, 
f fluid property 
r reference value 

Greek symbols S solid matrix property 
!x effective thermal diffusivity of the medium W quantity at wall, e.g. T;. 

heat generation is not uniform, but is determined by 
the reaction rate. 

A numerical study of the transient effects in two- 
dimensional natural convection where only a part of 
the lower boundary is heated has been presented by 
Horne and O’Sullivan [3]. They used Darcy’s model 
for the flow and a finite difference discretization of the 
second-order terms by the standard five-point formula 
and the non-linear convective terms by the Arakawa 
[ 191 method, a scheme which we also use in the present 
study. They observed sustained oscillatory convection 
in certain regions of the parameter space. Using a 
pseudo-spectral numerical scheme, Kimura et al. [4] 
have studied the two-dimensional, single-cell, tran- 
sient convection with the objective of identifying the 
route to chaos. They have observed periodic, quasi- 
periodic and non-periodic solutions of the Darcy- 
Boussinesq model in a square duct with bottom heat- 
ing. Two-dimensional transient natural convection 
generated by heated vertical walls has been studied 
by Poulikakos and Bejan [20] using the Darcy- 
Boussinesq equations. A boundary layer solution 
structure was assumed and only low Rayleigh 
numbers were considered. Inaba and Seki [21] have 
presented an experimental and numerical study of 
two-dimensional, transient convection using a two- 
equation energy model and thus allowing for finite 
resistance between the fluid and the solid matrix. They 
do not report any oscillatory patterns, although Chan 

and Banerjee (71 did find oscillatory patterns using 
a three-dimensional simulation of the two-equation 
energy model. 

In the present work we consider the transient effects 
of two-dimensional convection generated and sus- 
tained by uniform internal heat generation. As pointed 
out in ref. [ 121, the problem is also analogous to mixed 
convection heat transfer in a horizontal porous duct 
if the Darcy-Boussinesq equations are used. With 
Darcy’s model, the axial flow is uniform across the 
cross-section and hence the uniform heat generation 
which is removed through the boundaries is equi- 
valent to uniform axial convection of energy. The 
analogy breaks down if the Brinkmann or 
Forchheimer modifications are introduced into the 
flow equations (as the axial flow is no longer uniform 
across thecross section) or if three-dimensional effects 
become important (as the axial convection is not 
invariant in three-dimensional developing thermal 
flow). We are interested in particular in the transient 
evolution to steady solutions and the development of 
sustained oscillatory solutions. In an earlier study with 
mixed convection in empty ducts with large aspect 
ratios Fung et al. (221 found several multiple steady- 
state solutions. The possibility of a similar behavior 
in the current problem with porous media is briefly 
explored. Such steady-state solutions are valid for 
both the fully developed mixed convection and two- 
dimensional natural convection with internal heat gen- 
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eration. But the oscillatory solutions could only be 
realized in the case of heating with internal heat 
sources. 

GOVERNING EQUATIONS AND 
NUMERICAL PROCEDURE 

Consider a horizontal, rectangular, porous layer of 
width 2b, height 2a and permeability K. The porous 
medium is saturated with a Auid of density p and 
viscosity g. Darcy’s model is assumed to hold to 
describe the flow behavior. A two-dimensional state 
of the flow is considered which can be realized exper- 
imentally by making the third dimension small com- 
pared to a and b. A constant rate of heat generation 
per unit volume, Qs is maintained and the boundary 
of the porous eel1 is maintained at a uniform tem- 
perature of Ti. The Boussinesq approximation is 
invoked to model the natural convection effect which 
is 

P = pJl--B(T’-7X1 (1) 

where T: is some reference tem~rature. The con- 
servation equations for mass, momentum and energy, 
subject to the above conditions are 

K dP’ 
o’= -- ;7+pg 

[ 1 P OY 
WI 

(4) 
where u is the heat capacity ratio given by 

d =z +W,]r+(l -@I&J, 

[PCPlf 

and 4 the porosity of the medium, subscripts s and f 
refer to the solid and fluid, respectively. a = k/[&Jr 
is the thermal diffusivity and k the effective thermal 
conductivity of the fluid-solid system. A stream 
function Y is defined as 

dY 
d---y, ay 

u*r _s. (5) 

Next define the following dimensionless variables : 

r = t’/(crfz*[a), x = d/a, y = y’/a 

u = d/(&z), u = u’[(a/fff 

B= w-w 
(QsA’lk) 

x100, Y=Y/a 

where the dimensionless temperature has been muhi- 

plied by 100 to keep the numerical value of 6 of the 
order of 1. After eliminating the pressure P’ from 
equation (3) by taking the cross derivative and intro- 
ducing the defining stream function we obtain the 
stream function ~uation 

ae 
VY = 4.5 

de a~ ae ay ae 
-L-WI_ 5;+ ayax [ axay 1 

= v2e+ so0 
47 (7) 

where y = bja is the aspect ratio of the duct, i: = 
R/100 = KBgaA’QJlOOavk, R is a Rayleigh num- 
ber and A’ the cross-sectional area of the medium. 
Equations (6) and (7) are to be solved over the domain 
x E t-y, y] and y E [ - 1, l]. The equations clearly have 
reflective s~rnet~ about x = 0, although this con- 
dition is not imposed in the numerical solution pro- 
cedure as it would restrict the solution set to sym- 
metric ones. This is particularly restrictive on the 
oscillatory solutions as the two halves are then forced 
to oscillate synchronously, which is not a generic case. 
Hence the equations are solved over the full domain 
using the boundary conditions 

e(,y = +y,y) = e(x,y = + I) = 0 (8) 

W(x = Ity,y) = Y(x,y = If: 1) =.o. (9) 

Equation (9) only imposes the normal velocity at the 
boundary to be zero as is customary for Darcy’s 
model. An overall heat balance gives Q#(At) = 
h(A.r)C’(T,- 1;) where C’ is the circumference of the 
duct, AZ the depth perpendicular to the x-y plane and 
h the heat transfer coefficient. In dimensionless form, 
with Nu = hL&/k; it can be rearranged as 

100 -- N” - (1 +yy)2 r* (10) 

Equations (6) and (7) were discretized as follows : the 
convective term in equation (7) was discretized by the 
Arakawa scheme [19] and the diffusive term was 
disc&ted by the Dufort-Franked scheme. The 
Arakawa scheme has a formal truncation error of 
O(At’, dw’, Ay’). The stream function equation was 
discretized by the central difference scheme. This par- 
ticular combination of discretization has been found 
to be useful by several others [3,22,23] in studying 
transient convection probIems exhibiting instability. 
For an aspect ratio of 1, a spatial grid of 41 x 41 was 
used throughout which was found to be adequate in 
ref. [12]. For an aspect ratio of 8 a grid of 121 x21 
was used which provided at least 10 grid points per 
cell in the case of muhiceiiular Bows. Time step sizes 
of 6t = 0.001, 0.~5 and 0.00025 were tried for the 
case of A = 50, y = t, where a sustained oscillation 
was observed. Ail three time step sizes gave identical 
waveforms and the period changed only by about 5% 
when the St was changed by a factor of 4. Hence a St 
of 0.0005 was used for the rest of the simulations. 
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RESULTS AND DISCUSSION 

Figure 1 shows the Nusselt number computed from 
equation (10) at every time step for the case of y = I 
and 1= 10,20,40 and 80. Each case corresponds to 
a cold start, i.e the initial temperature and velocities 
were zero at the instant heat generation is started. 
For 1 d 40 a steady-state condition was reached in 
a dimensionless time unit of about 0.5. For I = 80, 
however, no such steady state was reached. Although 
the steady-state profiles are not shown here for every 
case, they are identical to that found in ref. [12] with 
two symmetric counter-rotating cells. The steady-state 
Nusselt number is also in quantitative agreement with 
that of ref. [12]. It should be pointed out that a central 
difference discretization was used in ref. [12] for all 
the terms in the steady-state part of equations (6) and 
(7). In the present work, time-dependent simulations 
are carried out using the Arakawa scheme, and it is 
reassuring that the two different schemes give the same 
steady-state results. We have always observed the tem- 
perature and stream function to preserve symmetry 
about the x = 0 line whenever a steady state is 
reached. In principle it is possible to have asymmetric 
steady profiles as well, which must then occur in pairs. 
But it was never observed in the present simulations. 

Figure 2 shows the Nusselt number as well as the 
minimum and maximum stream function values in 
the flow domain as a function of time. A sustained 
oscillation is observed. The stream function and tem- 
perature contours at the time steps indicated in Fig. 2 
are shown in Fig. 3. It is clear that the oscillatory 
solutions do not exhibit symmetry about the x = 0 
line and the oscillations appear to be. between the two- 
cell and the four-cell patterns reported in ref. [12]. As 
seen in Figs. 3(a) and (c), the additional cells (or blob) 
form at the lower boundary and rise and mix with 
the rest of the fluid. It is at these time instants that 
the instantaneous Nusselt number has a maximum 
and there are two peaks per period, each one cor- 
responding to the formation of a blob at the lower 
boundary. 

Figure 4 shows the solution behavior over a range 
of 1 from 44 to 58 in steps of A1 = 2. At i = 44 a 

st,...t...,B....B..’ 1 
0.0 0.5 1.0 1.s 2.0 

Dimenaionleas time 

FIG. 1. Nusselt number variation with dimensionless time: 
1= 10,20,40and80;y= 1.0. 

, 
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,.,....,....,...., . . . . . . . . . . 

0.0 11 to a.0 co LO 

Dimensionless time 

FIG. 2. Nusselt number and the minimum and maximum of 
stream function in the flow domain show the oscillatory 

pattern for y = 1.0, I. = 50.0. 

steady-state pattern with symmetry evolves. But at 
1= 46 a low frequency oscillation is observed. The 
time integration was continued up to r = 20, to ensure 
that the nature of the oscillation was sustained. The 
power spectrum was obtained using FFT on a section 
of the Nu vs T times series (after the initial transients 
were removed). The basic frequency at E. = 46 is 

Y =l.O A =50 

Strramline csntours Temprrahwr contours 

A+=2.0 

(e) 7=2.00 

(d) 7- =1.35 

(c) 7 =l.lO 

(b)7-=0.95 

(a) 7 =0.70 

A 8 =0.003 

FIG. 3. Stream function and temperature contours over one 
complete cycle reveal the nature of the oscillation : 9 = I .O, 

1 = so. 
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Dimensionless time 

a.4 

FIG. 4. The variations in the oscillatory pattern as the 
dynamical parameter Z is changed, at a fixed aspect ratio of 

7 = 1.0. 

f, = 1.56 and it increases to f, = 1.95 at i. = 54. In 
general the frequency increases with increasing 1 
values, a behavior observed by Kimura et al. [4] also, 
for pure natural convection in porous ducts. At 
i. = 56, the oscillations become chaotic, perhaps due 
to the introduction of an incommensurate frequency. 
Interestingly, at 1 = 58 a steady-state pattern 
reappears. This was obtained by taking the final state 
obtained from the simulation at E. = 56 and using that 
as the initial condition. Notice that although the initial 
profile does not have symmetry, it is restored during 
the integration with I = 58. It should be realized that 
multiple solutions exist for this problem and the real- 
ization of any particular solution in any physical or 
numerical simulation will depend on the starting con- 
dition, the type of excitation imposed on the system 
and the region of attraction of the final state. In fact 
at 1 = 58 several steady-state solutions exist as com- 
puted in ref. [24] with the arc-length continuation 
scheme. Unlike arc-length schemes, the simulation 
such as the present one does not force the solution to 
remain on the same branch and hence branch jumping 
can occur as I is continuously increased. Hence this 
apparent return to a more orderly state as % is con- 
tinuously increased should not be surprising. 

Figure 5 shows similar results for I = 60, this time 
for both a cold start condition and using the final 
state for 1= 50 as the initial condition. Both of them 
converge to the same steady state with two symmetric 
counter-rotating cells. Although the general expec- 
tation is that the solution structure will proceed from 
a more orderly state with a high degree of symmetry 
to a less orderly state with an increasing value of the 

0.0 1.0 2.0 2.0 4.0 

Dimensionless time 

5.0 

FIG. 5. A steady two-ccl1 pattern is re-established at i. = 60 
and y = 1 .O starting at two different initial conditions. 

dynamical parameter, the reverse behavior has also 
been observed recently by Lennie et al. [23] in pure 
natural convection in ducts. Such a behavior is criti- 
cally dependent on the multiplicity of the solutions 
and how the stability is transferred between the vari- 
ous branches. For example Nandakumar et al. [24] 
have traced the steady-stale solution branches of this 
problem and found that there are two limit points at 
I = 41.7357 and 44.9685 and that there is no steady, 
symmetric, two-cell solution in this range. But an 
isolated two-cell branch exists beyond 1. = 45. Notice 
that a steady solution is obtained in Fig. 4 for i. = 44. 
This can be easily resolved as a four-cell steady branch 
exists for i, > 25.7574 as computed in ref. [24]. 
Although this branch extends up to 1= 100, upon 
increasing I from 44 to 46 in the numerical simulation 
an oscillatory solution evolves. This again is due to 
the jump from one branch to another, perhaps due to 
a smaller region of attraction of the four cell, steady 
solution at A= 46. As pointed out before, in the time- 
dependent simulations like the present one, which one 
of the possible solutions will be realized depends on 
the initial condition and the region of attraction of 
the solution. Hence it is entirely possible that the 
solution switches between various branches as i is 
continuously increased. 

Upon increasing L to 70 a chaotic state with no 
discernible pattern is observed once again as shown 
in Fig. 6. The power spectrum is shown in Fig. 7 for 
both 1= 54 and 70. The periodic solution cor- 
responding to 1= 54 shows clearly discernible peaks 
in the low frequency range with a fundamental 
frequency of 1.95 and its higher harmonics, while no 
such peaks are found for 1= 70. 

Figure 8 shows the trajectory of two state variables, 
namely the average Nusselt number and the minimum 
of the stream function in the phase space over several 



156 M. R. ISLAM and K. NANOAKUMAR 

1.0 S.0 3.0 4.0 

Dimensionless time 
5.0 

FIG. 6. A chaotic behavior evolves at 1 = 70 and y = 1.0. 
FFT on the time series reveals a broad band spectrum, 

indicative of chaos. 

cycles of integration for the cases of 1= 46, 50 and 54. 
Lennie et al. [23] use the Nusselt number and the kinetic 
energy (E = j Jv’ ti dy) as the two state variables and 
denote the oscillatory patterns as Pl, P2, Pn, etc. 
depending on the number of cycles, n per period. At 
i. = 46, which corresponds to a single peak per cycle 
in Fig. 4, a single closed trajectory is seen, hence a P 1 
solution according to the convention of Lennie et al. 
[23]. This transforms to a P2 solution at i. = 50 and 
remains as such for i. = 54 also. Figure 9 shows a 
chaotic state at 1 = 62, y = 1.0. The phase plane plot 
of kinetic energy, E vs Nu shows a strange attractor 
behavior with significant fluctuations in the amplitude 
of E but only a small amplitude oscillation in Nu. This 

l.OE-2 

l.OE-3 

l.OE-4 

LOE-5 

l.OE-6 
5 l.OE-7 

2 l.OE-5 ** 
& l.OE-9 

-13.0 “““,“,“““““‘,‘..,‘.,“,‘,l 
13.8 14.3 14.8 15.3 

Nusselt number 

FIG. 8. The trajectory in the phase space indicates the trans- 
formation from Pl to p2 solution as i. is increased from 46 

to 50. 

solution corresponds to an asymmetric two-cell 
pattern. 

The effect of aspect ratio on the time evolution of 
the convective pattern is studied next. Figure 10 shows 
the Nusselt number as a function of T for y = 2 and 
1 = 10, 20, 40 and 80. A steady pattern is observed 
only for the first two cases (A = 10 and 20). Figure 
11 shows a sustained oscillation for E. = 30 and the 
streamline contours once again show the breaking of 
symmetry about the vertical middle line. Unlike the 
previous case (Fig. 3) where blobs of fluid emerged 
from the bottom wall, the oscillations now are due to 
gentle swaying of the separation line near the bottom 
of the duct. Hence the magnitude of the fluctuations 
is also much smaller than the previous case. Also 
shown on Fig. I1 is the power spectrum for I = 30, 
and y = 2.0 which shows clearly identifiable peaks. 
Upon increasing 1 to 32, the periodic oscillations give 

k l.OE-2 

2 LOE-3 

o l.OE-4 

a l.OE-5 

l.OE-6 

LOE-7 

l.OE-B 

LOE-9 
0 10 20 30 40 50 

Frequency 

W 

G730.0 

? 

2 
w 720.0 

.; 

z 710.0 
P 

FIG. 7. Power spectrum of the Nu(T) time series for (a) 1 = 54 
which shows distinct peaks and (b) 1 = 70 which only shows 

700.0 ~~,,*.~~~~z~SCC~ 
15.00 15.02 15.04 15.05 15.08 15.10 

Nusselt number 

a broad band noise. 

FIG. 9. A chaotic state at I = 62, y = 1.0. It corresponds to . . ” 
an asymmetrx two-cell tlow. 
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FIG. 10. Nusselt number variation with dimensionless time: 
1= 10,20,40 and 80; y = 2.0. 
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FIG. I 1. Periodic solution is obtained for A = 30 and y = 2.0. 
The streamline contours over one cycle show the loss of 
symmetry about the middle line and a weak oscillation. The 

power spectrum shows sharp peaks. 

20 

Dimensionless time 

lE-14 g 

0 10 20 30 40 50 

Frequency 

FIG. 12. The Nusseit number time series and the power 
spectrum, both show a non-periodic solution at i. = 32, 

y = 2.0. 

way to a chaotic one as seen in Fig. 12. The fluc- 
tuations are much larger in magnitude indicating the 
fo~ation of vigorous convection with roll over of 
blobs. The corresponding power spectrum is also 
shown in the same figure which shows no clear peaks. 

As the aspect ratio of the duct is increased, the 
length and time scales for the diffusive effects to propa- 

4s . . ..._.* . . . . . . ..)................ 

Acpcct ratio - 4.0 

x 
_-.-.._.. *o.o 
---- 90.0 
- --- 20.0 
-- 10.0 

i 
4.l I5 
z 
P 
z’ 

14 

13 

12 

11 

10 

9 t..‘.....i”.,,....l....--...1 
1.0 2.0 3.0 4.0 

Dimensionleas time 

FIG. 13. Nusselt number variation with dimensionless time: 
I = 10,20, 30 and 40 ; y = 4.0. Non-stationary solutions are 

obtained for I. = 30 and 40. 
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7" =4-o 

7 =2.7 

-r =2.5 

7- =2.2 
Stream line contours A@ ~2.0 

FIG. 14. The streamline contours show a dominant four cell 
pattern with continuous formation and mixing of bfobs near 

the end. 

gate from one end of the duct to the other increases 
significantly. Hence it should take a longer time to 
reach a steady state if one exists at all, and in cases 
where there is sustained oscillations the periodic solu- 
tions should have a long period component modu- 
lated by the diffusive effects and perhaps super- 
imposed on a shorter period governed by convective 
effects. Because of the computational constraints the 
periodic states for large aspect ratios were not studied 
in detail. Nusselt number vs T is shown in Fig. 13 for 
y = 4.0 and ,I = 10, 20, 30 and 40. in all the simu- 

5 ~...l.......-........~.........t 
0.0 1.0 2.0 3.0 4.0 

Dimensionless time 

FIG. f 5. Nusseft number variation with dimensionless time : 
1 = 10,20,30 and 40; y = 8.0. Steady solutions are obtained 

for all the four cases. 

iations from cold start, we have always observed the 
convection to begin with the formation of two cells at 
the two ends of the duct, no matter how small the i, 
value is. For I = IO in Fig. 13 those are the only cells 
observed at steady state. If, however, i. is sufficiently 
large the instability generates interior cells. This is 
seen, for example, for I = 20 in Fig. 13 where VII 
begins to increase around t = 2.0 corresponding to 
the formation of two interior cells. A steady, sym- 
metric four-cell pattern emerges after a long time. 
For ,I = 30, however, the symmetry is broken and an 
oscillatory pattern begins to evolve. Figure 14 shows 
the stream function patterns at various times for 
A = 40 and y = 4.0. In this case the convection is much 
stronger, as seen by the formation and destruction of 
additional blobs near the end, and also by the 
increased magnitude of the amplitude as seen in Fig. 
13. 

Stream function contoursA@= Isothermabe r0.003 

FIG. 16. Streamline and isotherm contours show the time evolution of a symmetric eight-cell pattern for 
1= 30, y = 8.0. 
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Stream function cOntou?s drcI = 1 xaotherms At? =0.003 

FIG. 17. StreamIine and isotherm contours sfiow the time evolution of a symmetric ten-c& pattern for 
i = 40, y r: 8.0. 

The Nussett number evolution towards four steady 
states is shown in Fig. 15 for y e; 8.0 and rl = 10, 20, 
30 and 40. As expected the time to reach steady state 
is much longer compared to shorter ducts. For I = 30 
and 40 Nu increases once the interior celts begin to 
form, and this process begins to form at a much earlier 
time when the heat generation rate is higher, i.e. 

A = 40. The stream function and isotherm evolution 
with time are shown in Figs. 16 and 17 for i. t 30 
and 40, respectively. In both cases the end cells are 
established first at about z = 1.0. At a lower rate of 
heat generation (2 = 30, Fig. 161, the growth rate 
of the interior cells is smailer and the steady state 
corresponds to one with eight interior cells, At a 

Muftipls steady eta&r 
Stream function contours 

FIG. 18. Streamline and isotherm contours of several steady-state solutions indicating some muitiplicities. 
The initial state used in each case is shown in square brackets : (a) A= 20 [cold start], (b) i = 30 [a], (c) 

d = 40 &], (d) A= 30 [c], (e) i = 20 b], (f) R = 20 Id]. 
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higher heating rate (A= 40, Fig. 17) the interior cells 
grow at a faster rate and the steady state corresponds 
to ten interior cells. In both cases symmetry about the 
centerline (x = 0) is preserved at all times. 

Figure 18 shows the steady-state patterns obtained 
through a specific sequence of simulation for several 
values of 1. It is meant to illustrate the potential for 
multiplicities of steady-state solutions in this problem. 
A detailed mapping of the regions of multiplicity has 
not been attempted in this work. Figure 18(a) cor- 
responds to a coldstart simulation, i.e. initial velocities 
and the temperature are zero. It shows that only two 
end cells are developed at 1 = 20. Using the profile at 
1 = 20 as the initial state and increasing the value of 
i to 30, an eight-cell, steady pattern is observed as 
shown in Fig. 18(b). Continuing this process by 
increasing 1 to 40 and using the profile corresponding 
to 1 = 30 as the initial state, a ten-cell, steady pattern 
evolves (Fig. 18(c)). With the profile in Fig. 18(c) as 
the initial profile and decreasing 1 to 30 results in a 
different steady-state pattern from Fig. 18(b), namely 
one with a ten-cell pattern. Starting with the profiles 
in Figs. 18(b) and (d) as the initial patterns and 
decreasing 1 to 20 results in two different solutions 
with very weak circulation in the interior. These weak 
circulations remained stable for 5 of up to 10. 

CONCLUSIONS 

A two-dimensional, numerical study of the tran- 
sient convection in heat generating porous ducts has 
been carried out. Multiple steady-state solutions, as 
well as periodic, quasi-periodic and non-periodic solu- 
tions have been found for the porous media model 
equations consisting of Darcy’s law for the flow and 
a single-equation, convective-diffusion model for the 
energy equation. All the non-stationary solutions lose 
symmetry about the centerline. However, all the solu- 
tions that evolve into a steady state have been found 
to have the symmetric structure about the centerline. 
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CONVECTION VARIABLE DANS DES COUCHES PGREUSES SATUREES, AVEC 
SOURCES INTERNES DE CHALEUR 

R&m&-La p&ente &de conceme ie transfert convectif thermique bidimensionnel, variable dans un 
conduit poreux, rectangulaire, sat& par un Auide et dans lequel ii y a ~~~~r~~~ iniforme de czar. 
Dans des travaux ant&ieursont 6th &udib les confi~mtions stationnaires de cet kcoulement. ici on examine 
I’ivofution vers ces r&rtes permanents. Daas piusieurs cas, on observe un comportement oscillatoire. La 
structure de la solution est gouvemC par deux paramttres, le rapport de forme du conduit 7 = &a et le 
nombre de Rayleigh R = K&aA’Qdavk. Pour un conduit avec rapport de forme uniti, une structure 
compliqufSe est observ6e quand croit le paramttre dynamique. Une configuration stable, symetrique B deux 
cellules, obsen& pour R allant jusqu’$4400* conduit ii un r6gime p6riodique pour R atteignant 5400, puis 
r un r&ime chaotique pour un domaine ttroit de R et 2 un retour B une solution stable 6 R = 5800. 
Lorsque y croit jusqu’8 8, on observe plusieurs solutions &&at permanent. La transition vers la convection 
oscillatoire se produit pour une valeur qui antic& forsque p augmente. Aucune des solutions osciilatoires 

n’est symetrique amour de la ligne centrale. 

NIGHT-STATIONARE KONVEKTION IN GESATrIGTEN POR&EN SCHICHTEN MIT 
INNEREN W~RME~UELLEN 

Z~rn~nf~~Es wird das ~eidimensionale, zeitlich ver&deriiche Verhalten des konvektiven 
Wlrmeilbergangs in poriisen Rechteck-Kanllen untersucht. Die por&e Struktur ist mit einem fluiden Staff 
geslttigt und gleichzeitig von innen beheizt. In frtiheren Arbeiten wurde die Vielfalt van Str6mungsformen 
im station&en Zustand untersucht. Nun wird der Entstehung dieser stationiiren ZustHnde nachgegangen. 
in einigen FIllen ergeben sich dabei Oszillationen. Die Struktur der L&sung wird von zwei Parametem 
bestimmt, dem Seitenverh8ltnis des Kanals y = b/n und der Rayieigh-Zahl R = K&dQ&vk. fn einem 
Kanal mit y = 1 ergibt sich beim Anwachsen der dynamischen Parameter eine kompl~~i~te Liisung. Fizr 
R d 4900 zelgt sich eine station&c ~rne~~he Z~i~lIenstruktur, Fitr gr&re Rayleigh-Zahlcn ergibt 
sich zuniichst ein periodischer Bereich (R < %OO), dann ein eng begrenzter chaotischer Bereich und 
schlieQlich ab R = 5800 wieder ein stationlrer %ereich. Erhiiht man das SeitenverhPltnis bis auf y = 8, so 
zeigen sich einige station&e MehrfachlBsungen. Der obergang zu oszillierenden Konvektionsstriimungen 
tritt mit steigendem y bei immer kleineren Werten von y auf. Keine der Lijsungen mit Oszillationen ist 

symmetriseh bezliglich der Mittellinie. 


