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Abstract—The present investigation is focused on the two-dimensional, transient behavior of convective
heat transfer in porous, rectangular ducts saturated with a fluid and in which there is uniform internal heat
generation. In earlier works the steady-state multiplicity features of this flow have been studied. In the
present work the evolutionary path to such steady states is examined. In several cases, a sustained oscillatory
behavior has been observed. The solution structure is governed by two parameters, namely the aspect ratio
of the duct, y = b/a and the Rayleigh number, R = KBgad'Q,/avk. For a duct with an aspect ratio of
unity, a complicated solution structure is observed upon increasing the dynamical parameter. A steady,
symmetric two-cell pattern observed for R of up to 4400 gives way to a periodic regime for R of up to
5400, then to a chaotic regime over a narrow range of R and a return to a steady-state solution at R = 5800.
Upon increasing 7y to 8, several multiple steady-state solutions are observed. The transition to oscillatory
convection occurs at an earlier value of R with increasing y. None of the oscillatory solutions are symmetric
about the center line.

INTRODUCTION

CoNvVECTIVE heat transfer in fluid-saturated porous
media has been studied extensively since the early
analysis by Lapwood [1). Several studies have focused
on the dynamical behavior of such systems, namely the
bifurcation character of the stationary solutions [2],
the evolution of oscillatory patterns {3} and the route
to chaotic flows [4] in such systems. A purely natural
convection state, driven by buoyancy, can be
generated by heating from the boundary. Both bottom
heating and side heating are of interest in studying
thermal insulation systems. Convective heat transfer
in porous media is also of importance in areas such
as geothermal engineering, enhanced oil recovery
although the transport processes are much more com-
plicated due to the multiphase nature of the flow. A
convective state generated and sustained by internal
heat generation in a porous medium is also of interest
in packed bed reactors, underground disposal of
radioactive waste material, etc. An extensive review
of these works can be found in Combarnous and
Bories [5] and Cheng [6].

Most of these works are based on Darcy’s model
for the flow and an averaged, single-equation model
for the energy equation with the Boussinesq approxi-
mation for the density variation. Issues concerning
the adequacy of the model itself in describing the
convective heat transfer processes in porous media
have been examined only recently. Chan and Banerjee
{71 have studied the transient three-dimensional
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natural convection using a two-equation model with
a finite resistance between the fluid and the solid in
describing the heat transfer process. Other effects such
as the importance of inertia at high flows, the effect
of variable porosity particularly near the boundary,
etc. have been examined recently in both pure natural
convection [8] and pure forced convection [9] systems.

For the natural convection case, the effect of tilt
angle on the onset of convective state and on the
multiplicity of two-dimensional, steady-state solu-
tions has been studied by Kaneko et al. [10] and by
Moya et al. [11], respectively. Similar results for the
mixed convection state or for natural convection with
internal heat sources have been obtained by Islam
and Nandakumar [12], Buretta and Berman {13],
Tveitereid {14}, Poulikakos {15] and Schulenberg and
Muiiller [16). Buretta and Berman [13] have presented
experimental evidence of multiple steady-state solu-
tions beyond a certain Rayleigh number. Tveitereid
[14] has presented a stability analysis of the same
problem and has shown that steady two-dimensional
rolls and hexagons are possible solutions to the
governing equations. Both Schulenberg and Miiller
(t6] and Poulikakos {15] have presented numerical
results of two-dimensional convection in an internally
heated, saturated porous layer which is superposed
with a layer of pure liquid on top. The former con-
sidered only Darcy’s equations for the flow model
while the latter has included the Brinkmann (bound-
ary effect) and Forchheimer (inertial effect) modi-
fications to the equations of motion. The convective
effects of thermal ignition in porous media have been
examined by Kordylewski and Krajewski [17] and
Gatica et al. [18]. In this variation the rate of internal
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a  width of the proous medium

A’ cross-sectional area of the duct

b height of the porous medium

C’  circumference of the duct, 4(a+b)

C, specific heat

D, hydraulic diameter, 4ab/(a+b)

g  acceleration due to gravity

k  effective thermal conductivity of the
medium

K permeability of the medium

Nu  Nusselt number, equation (10)

P pressure

@, volumetric rate of heat generation

R Rayleigh number, (Kfgad’'Q,)/avk

t time

T  dimensional temperature averaged over a

representative elementary volume

velocity components in x, y, respectively

coordinate directions.

u, v
X,y

Greek symbols
a  effective thermal diffusivity of the medium

NOMENCLATURE

B coefficient of thermal expansion

y  aspect ratio of the geometry, b/a

6  dimensionless temperature,
(T—-T)100/(Q,A/k)

A Rayleigh number, a dynamical parameter,

R/100

u  viscosity of the fluid

v kinematic viscosity of fluid

p  density of the fluid

o  ratio of specific heats

7 dimensionless time, r'/(ga*/a)

¥  stream function.
Superscript

! dimensional quantity.
Subscript

b bulk property, e.g. bulk temperature, 6,

f fluid property

r reference value

s solid matrix property

w  quantity at wall, e.g. T,.

heat generation is not uniform, but is determined by
the reaction rate.

A numerical study of the transient effects in two-
dimensional natural convection where only a part of
the lower boundary is heated has been presented by
Horne and O’Sullivan [3). They used Darcy’s model
for the flow and a finite difference discretization of the
second-order terms by the standard five-point formula
and the non-linear convective terms by the Arakawa
[19] method, a scheme which we also use in the present
study. They observed sustained oscillatory convection
in certain regions of the parameter space. Using a
pseudo-spectral numerical scheme, Kimura et al. [4]
have studied the two-dimensional, single-cell, tran-
sient convection with the objective of identifying the
route to chaos. They have observed periodic, quasi-
periodic and non-periodic solutions of the Darcy-
Boussinesq model in a square duct with bottom heat-
ing. Two-dimensional transient natural convection
generated by heated verrical walls has been studied
by Poulikakos and Bejan [20] using the Darcy—
Boussinesq equations. A boundary layer solution
structure was assumed and only low Rayleigh
numbers were considered. Inaba and Seki {21] have
presented an experimental and numerical study of
two-dimensional, transient convection using a two-
equation energy model and thus allowing for finite
resistance between the fluid and the solid matrix. They
do not report any oscillatory patterns, although Chan

and Banerjee {7] did find oscillatory patterns using
a three-dimensional simulation of the two-equation
energy model.

In the present work we consider the transient effects
of two-dimensional convection generated and sus-
tained by uniform internal heat generation. As pointed
out in ref. [12], the problem is also analogous to mixed
convection heat transfer in a horizontal porous duct
if the Darcy-Boussinesq equations are used. With
Darcy's model, the axial flow is uniform across the
cross-section and hence the uniform heat generation
which is removed through the boundaries is equi-
valent to uniform axial convection of energy. The
analogy breaks down if the Brinkmann or
Forchheimer modifications are introduced into the
flow equations (as the axial flow is no longer uniform
across the cross section) or if three-dimensional effects
become important (as the axial convection is not
invariant in three-dimensional developing thermal
flow). We are interested in particular in the transient
evolution to steady solutions and the development of
sustained oscillatory solutions. In an earlier study with
mixed convection in empty ducts with large aspect
ratios Fung et al. [22] found several multiple steady-
state solutions. The possibility of a similar behavior
in the current problem with porous media is briefly
explored. Such steady-state solutions are valid for
both the fully developed mixed convection and two-
dimensional natural convection with internal heat gen-
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GOVERNING EQUATIONS AND
NUMERICAL PROCEDURE

Consider a horizontal, rectangular, porous layer of
width 2, height Za and permeability X. The porous
medium is saturated with a fluid of density p and
viscosity . Darcy’s model is assumed to hold to
describe the flow behavior. A two-dimensional state
of the flow is considered which can be realized exper-

imentally by malking the third dimension small com-
imentally 0y maxing the third gimension small com:

pared to a and b. A constant rate of heat generation
per unit volume, @, is maintained and the boundary
of the porous cell 1s maintained at a uniform tem-
perature of T,. The Boussinesq approximation is
invoked to model the natural convection effect which
is

=p[1-8(T"—T))] 1)

where T, is some reference temperature. The con-
servation equations for mass, momentum and energy,
subject to the above conditions are
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where ¢ is the heat capacity ratio given by

_ 910G 1+ (1= 9)pC, 1,
[Pcp]f

and ¢ the porosity of the medium, subscripts s and f
refer to the solid and fluid, respectively. a = k/[pC,};
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nlmA b numerical value of 8 of the
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order of 1. After eliminating the pressure P from
equation (3) by taking the cross derivative and intro-
ducing the defining stream function we obtain the
stream function equation
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where y = b/a is the aspect ratio of the duct, A =
R/100 = Kfgad’Q,/100avk, R is a Rayleigh num-
ber and A’ the cross-sectional area of the medium.
Equations (6) and (7) are to be solved over the domain
xe[—~7,7] and ye[—1, 1]. The equations clearly have
reflective symmetry about x = {, although this con-
dition is not imposed in the numerical solution pro-
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metric ones. This is particularly restrictive on the
oscillatory solutions as the two halves are then forced
to oscillate synchronously, which is not a generic case.
Hence the equations are solved over the full domain
using the boundary conditions

0(x,y = £1).=0 @®

¥xy=2D=0  ©

O(x = +y,y) =
¥ix=+7,y)=

Equation (9) only imposes the normal velocity at the
boundary to be zero as is customary for Darcy’s
model. An overall heat balance gives 0,4'(Az) =
h(A2)C'(T,~T,) where C’ is the circumference of the
duct, Az the depth perpendicular to the x—y plane and
h the heat transfer coefficient. In dimensionless form,
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Ny = —r—y e, (10)
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Equations (6) and (7) were discretized as follows: the
convective term in equation (7) was discretized by the
Arakawa scheme [19] and the diffusive term was
discretized by the Dufort-Frankel scheme. The
Arakawa scheme has a formal truncation error of
O(At2 Ax?*, Ay‘) The stream function equation was
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conductivity of the fluid-solid system. A stream
function ‘¥ is defined as
ia gl lia 48
=0y V= — e, 5
ayl * axl ( )

Next define the following dimensionless variables

T = Fj{ca’/a), x=x'fa, y=}ja
u = w'{(z/a), v = v'f(afa)
(T'~T.)
8= e X “)0, Y=Y
@, A7K) /

where the dimensionless temperature has been multi-
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ticular combination of discretization has been found
to be useful by several others [3,22,23] in studying
transient convection problems exhibiting instability.
For an aspect ratio of 1, a spatial grid of 41 x 41 was
used throughout which was found to be adequate in
ref. [12). For an aspect ratio of 8 a grid of 121 x21
was used which provided at least 10 grid points per
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of 4t = 0.001, 0.0005 and 0.00025 were tried for the
case of A =50, y =1, where a sustained oscillation
was observed. All three time step sizes gave identical
waveforms and the period changed only by about 5%
when the 4 was changed by a factor of 4. Hence a d¢
of 0.0005 was used for the rest of the simulations.



RESULTS AND DISCUSSION

Figure 1 shows the Nusselt number computed from
equation (10) at every time step for the case of y = 1
and 4 = 10, 20, 40 and 80. Each case corresponds to
a cold start, i.e the initial temperature and velocities
were zero at the instant heat generation is started.
For 4 < 40 a steady-state condition was reached in
a dimensionless time unit of about 0.5. For i = 80,
however, no such steady state was reached. Although
the steady-state profiles are not shown here for every
case, they are identical to that found in ref. [12] with
two symmetric counter-rotating cells. The steady-state
Nusselt number is also in quantitative agreement with
that of ref. [12]. It should be pointed out that a central
difference discretization was used in ref. [12] for al/
the terms in the steady-state part of equations (6) and
(7). In the present work, time-dependent simulations
are carried out using the Arakawa scheme, and it is
reassuring that the two different schemes give the same
steady-state results. We have always observed the tem-
perature and stream function to preserve symmetry
about the x =0 line whenever a steady state is
reached. In principle it is possible to have asymmetric
steady profiles as well, which must then occur in pairs.
But it was never observed in the present simulations.

Figure 2 shows the Nusselt number as well as the
minimum and maximum stream function values in
the flow domain as a function of time. A sustained
oscillation is observed. The stream function and tem-
perature contours at the time steps indicated in Fig. 2
are shown in Fig. 3. It is clear that the oscillatory
solutions do not exhibit symmetry about the x =0
line and the oscillations appear to be between the two-
cell and the four-cell patterns reported in ref. [12]. As
seen in Figs. 3(a) and (c), the additional cells (or blob)
form at the lower boundary and rise and mix with
the rest of the fluid. It is at these time instants that
the instantaneous Nusselt number has a maximum
and there are two peaks per period, each one cor-
responding to the formation of a blob at the lower
boundary.

Figure 4 shows the solution behavior over a range
of i from 44 to 58 in steps of Al=2. At Ai=44a

45 T T =T
Aspect ratio = 1.0

9
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FiG. 1. Nusselt number variation with dimensionless time:
4=10,20,40 and 80;y = 1.0.
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Fi1G. 2. Nusselt number and the minimum and maximum of
stream function in the flow domain show the oscillatory
pattern for y = 1.0, £ = 50.0.

steady-state pattern with symmetry evolves. But at
A =46 a low frequency oscillation is observed. The
time integration was continued up to 7 = 20, to ensure
that the nature of the oscillation was sustained. The
power spectrum was obtained using FFT on a section
of the Nu vs 1 times series (after the initial transients
were removed). The basic frequency at 4 =46 is

Y =1.0 A =50
Streamline contours

D @ (e) T =2.00

Temperaturs contours

D- @ (d) T=1.35

D
5

D) D

A8 =0.003

F1G. 3. Stream function and temperature contours over one
complete cycle reveal the nature of the oscillation: y = 1.0,
A=50.
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Nusselt Number
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FiG. 4. The variations in the oscillatory pattern as the

dynamical parameter 4 is changed, at a fixed aspect ratio of
7= 10.

fi=1.56 and it increases to f; = 1.95 at 4 = 54. In
general the frequency increases with increasing A
values, a behavior observed by Kimura et al. [4] also,
for pure natural convection in porous ducts. At
4 = 56, the oscillations become chaotic, perhaps due
to the introduction of an incommensurate frequency.
Interestingly, at i=158 a steady-state pattern
reappears. This was obtained by taking the final state
obtained from the simulation at 4 = 56 and using that
as the initial condition. Notice that although the initial
profile does not have symmetry, it is restored during
the integration with A = 58. It should be realized that
multiple solutions exist for this problem and the real-
ization of any particular solution in any physical or
numerical simulation will depend on the starting con-
dition, the type of excitation imposed on the system
and the region of attraction of the final state. In fact
at A = 58 several steady-state solutions exist as com-
puted in ref. [24] with the arc-length continuation
scheme. Unlike arc-length schemes, the simulation
such as the present one does not force the solution to
remain on the same branch and hence branch jumping
can occur as 4 is continuously increased. Hence this
apparent return to a more orderly state as 4 is con-
tinuously increased should not be surprising.

Figure 5 shows similar results for 4 = 60, this time
for both a cold start condition and using the final
state for 4 = 50 as the initial condition. Both of them
converge to the same steady state with two symmetric
counter-rotating cells. Although the general expec-
tation is that the solution structure will proceed from
a more orderly state with a high degree of symmetry
to a less orderly state with an increasing value of the
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FiG. S. A steady two-cell pattern is re-established at 2 = 60
and y = 1.0 starting at two different initial conditions.

dynamical parameter, the reverse behavior has also
been observed recently by Lennie et al. [23] in pure
natural convection in ducts. Such a behavior is criti-
cally dependent on the multiplicity of the solutions
and how the stability is transferred between the vari-
ous branches. For example Nandakumar et al. [24]
have traced the steady-state solution branches of this
problem and found that there are two limit points at
4 =41.7357 and 44,9685 and that there is no steady,
symmetric, two-cell solution in this range. But an
isolated two-cell branch exists beyond 4 = 45. Notice
that a steady solution is obtained in Fig. 4 for 4 = 44.
This can be easily resolved as a four-cell steady branch
exists for 4> 25.7574 as computed in ref. [24].
Although this branch extends up to A = 100, upon
increasing 4 from 44 to 46 in the numerical simulation
an oscillatory solution evolves. This again is due to
the jump from one branch to another, perhaps due to
a smaller region of attraction of the four cell, steady
solution at 4 = 46. As pointed out before, in the time-
dependent simulations like the present one, which one
of the possible solutions will be realized depends on
the initial condition and the region of attraction of
the solution. Hence it is entirely possible that the
solution switches between various branches as 4 is
continuously increased.

Upon increasing 4 to 70 a chaotic state with no
discernible pattern is observed once again as shown
in Fig. 6. The power spectrum is shown in Fig. 7 for
both 2= 354 and 70. The periodic solution cor-
responding to 4 = 54 shows clearly discernible peaks
in the low frequency range with a fundamental
frequency of 1.95 and its higher harmonics, while no
such peaks are found for 4 = 70.

Figure 8 shows the trajectory of two state variables,
namely the average Nusselt number and the minimum
of the stream function in the phase space over several
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FIG. 6. A chaotic behavior evolves at A = 70 and y = 1.0.

FFT on the time series reveals a broad band spectrum,
indicative of chaos.

cycles of integration for the cases of 4 = 46, 50 and 54.
Lennie et al. [23] use the Nusselt number and the kinetic
energy (E = [ [v? dx dy) as the two state variables and
denote the oscillatory patterns as Pl, P2, Pn, etc.
depending on the number of cycles, n per period. At
4 = 46, which corresponds to a single peak per cycle
in Fig. 4, a single closed trajectory is seen, hence a P1
solution according to the convention of Lennie ef al.
[23]. This transforms to a P2 solution at 4 = 50 and
remains as such for 4 = 54 also. Figure 9 shows a
chaotic state at A = 62, y = 1.0. The phase plane plot
of kinetic energy, £ vs Nu shows a strange attractor
behavior with significant fluctuations in the amplitude
of E but only a smalil amplitude oscillation in Nu. This
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F1G. 7. Power spectrum of the Nu(t) time series for (a) A = 54
which shows distinct peaks and (b) 4 = 70 which only shows
a broad band noise.
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FIG. 8. The trajectory in the phase space indicates the trans-
formation from P1 to P2 solution as 4 is increased from 46
to 50.

solution corresponds to an asymmetric two-cell
pattern.

The effect of aspect ratio on the time evolution of
the convective pattern is studied next. Figure 10 shows
the Nusselt number as a function of 7 for y = 2 and
A =10, 20, 40 and 80. A steady pattern is observed
only for the first two cases (4 = 10 and 20). Figure
11 shows a sustained oscillation for i = 30 and the
streamline contours once again show the breaking of
symmetry about the vertical middle line. Unlike the
previous case (Fig. 3) where blobs of fluid emerged
from the bottom wall, the oscillations now are due to
gentle swaying of the separation line near the bottom
of the duct. Hence the magnitude of the fluctuations
is also much smaller than the previous case. Also
shown on Fig. 11 is the power spectrum for 4 = 30,
and y = 2.0 which shows clearly identifiable peaks.
Upon increasing 4 to 32, the periodic oscillations give

Nusselt number
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FIG. 9. A chaotic state at 4 = 62, y = 1.0. It corresponds to
an asymmetric two-cell flow.
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Fi1G. 11. Periodic solution is obtained for A = 30 and y = 2.0.
The streamline contours over one cycle show the loss of
symmetry about the middle line and a weak oscillation. The
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power spectrum shows sharp peaks.
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FiG. 12. The Nusselt number time series and the power
spectrum, both show a non-periodic solution at 4 = 32,
y =20

way to a chaotic one as seen in Fig. 12. The fluc-
tuations are much larger in magnitude indicating the
formation of vigorous convection with roll over of
blobs. The corresponding power spectrum is also
shown in the same figure which shows no clear peaks.

As the aspect ratio of the duct is increased, the
length and time scales for the diffusive effects to propa-
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Fi1G. 13. Nusselt number variation with dimensionless time:
A =10, 20, 30 and 40; y = 4.0. Non-stationary solutions are
obtained for 2 = 30 and 40.
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A=40.0 7 = 4.0

=4.0
_%@) @@@ T =2.7

@ @@ T =2.5
T =2.2

Stream line contours AY =2.0

Fi1G. 14. The streamiine contours show a dominant four cell
pattern with continuous formation and mixing of blobs near
the end.

gate from one end of the duct to the other increases
significantly. Hence it should take a longer time to
reach a steady state if one exists at all, and in cases
where there is sustained oscillations the periodic solu-
tions should have a long period component modu-
lated by the diffusive effects and perhaps super-
imposed on a shorter period governed by convective
effects. Because of the computational constraints the
periodic states for large aspect ratios were not studied
in detail. Nusselt number vs 7 is shown in Fig. 13 for
y=4.0 and 1 = 10, 20, 30 and 40. In all the simu-
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FiG. 15. Nusselt number variation with dimensionless time:
4 =10, 20, 30 and 40 ; y = 8.0. Steady solutions are obtained
for all the four cases.

lations from cold start, we have always observed the
convection to begin with the formation of two cells at
the two ends of the duct, no matter how small the 4
value is. For 4 = 10 in Fig. 13 those are the only cells
observed at steady state. If, however, 4 is sufficiently
large the instability generates interior cells. This is
seen, for example, for i = 20 in Fig. 13 where Nu
begins to increase around 7 = 2.0 corresponding to
the formation of two interior cells. A steady, sym-
metric four-cell pattern emerges after a long time.
For 4 = 30, however, the symmetry is broken and an
oscillatory pattern begins to evolve. Figure 14 shows
the stream function patterns at various times for
A =40 and y = 4.0. In this case the convection is much
stronger, as seen by the formation and destruction of
additional blobs near the end, and also by the
increased magnitude of the amplitude as seen in Fig.
13.
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FiG. 16. Streamline and isotherm contours show the time evolution of a symmetric eight-cell pattern for
A=30,y=28.0.
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Stream function contoursAv¥ =i

FiG. 17. Streamline and isotherm contours show the time evolution of a symmetric ten-cell pattern for
A=40,7 = 8.0.

The Nusselt number evolution towards four steady
states is shown in Fig. 15 for y = 8.0 and 1 = 10, 20,
30 and 40. As expected the time to reach steady state
is much longer compared to shorter ducts. For 4 = 30
and 40 Nu increases once the interior cells begin to
form, and this process begins to form at a much earlier
time when the heat generation rate is higher, ie.

Multiple steady states
Stream function contours

A = 40. The stream function and isotherm evolution
with time are shown in Figs. 16 and 17 for 4 = 30
and 40, respectively. In both cases the end cells are
established first at about 7 = 1.0. At a lower rate of
heat generation (4 = 30, Fig. 16), the growth rate
of the interior cells is smaller and the steady state
corresponds 1o one with eight interior cells. At a

Multipie steady states
Isotherms

e D)

{& A INONOANOA @ ;J

Fic. 18. Streamline and isotherm contours of several steady-state solutions indicating some multiplicities.
The initial state used in each case is shown in square brackets: {a} 4 = 20 {cold start], (b) 1 = 30 [3}, {©)
2=400b], (d)A=30[c} (e} 4 =20{b), () 2 = 20[d}.
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higher heating rate (4 = 40, Fig. 17) the interior cells
grow at a faster rate and the steady state corresponds
to ten interior cells. In both cases symmetry about the
centerline (x = 0) is preserved at all times.

Figure 18 shows the steady-state patterns obtained
through a specific sequence of simulation for several
values of 4. It is meant to illustrate the potential for
multiplicities of steady-state solutions in this problem.
A detailed mapping of the regions of multiplicity has
not been attempted in this work. Figure 18(a) cor-
responds to a cold start simulation, i.e. initial velocities
and the temperature are zero. It shows that only two
end cells are developed at A = 20. Using the profile at
4 = 20 as the initial state and increasing the value of
4 to 30, an eight-cell, steady pattern is observed as
shown in Fig. 18(b). Continuing this process by
increasing 4 to 40 and using the profile corresponding
to 4 = 30 as the initial state, a ten-cell, steady pattern
evolves (Fig. 18(c)). With the profile in Fig. 18(c) as
the initial profile and decreasing 4 to 30 results in a
different steady-state pattern from Fig. 18(b), namely
one with a ten-cell pattern. Starting with the profiles
in Figs. 18(b) and (d) as the initial patterns and
decreasing A to 20 results in two different solutions
with very weak circulation in the interior. These weak
circulations remained stable for 7 of up to 10.

CONCLUSIONS

A two-dimensional, numerical study of the tran-
sient convection in heat generating porous ducts has
been carried out. Multiple steady-state solutions, as
well as periodic, quasi-periodic and non-periodic solu-
tions have been found for the porous media model
equations consisting of Darcy’s law for the flow and
a single-equation, convective-diffusion model for the
energy equation. All the non-stationary solutions lose
symmetry about the centerline. However, all the solu-
tions that evolve into a steady state have been found
to have the symmetric structure about the centerline.
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Transient convection in saturated porous layers with internal heat sources

CONVECTION VARIABLE DANS DES COUCHES POREUSES SATUREES, AVEC
SOURCES INTERNES DE CHALEUR

Résumé—La présente étude concerne le transfert convectif thermique bidimensionnel, variable dans un
conduit poreux, rectangulaire, saturé par un fluide et dans lequel il v a génération uniforme de chaleur.
Dans des travaux antérieurs ont été étudiés les configurations stationnaires de cet écoulement. Ici on examine
I'évolution vers ces régimes permanents. Dans plusieurs cas, on observe un comportement oscillatoire. La
structure de la solution est gouvernée par deux parameétres, le rapport de forme du conduit y = bja et le
nombre de Rayleigh R = Kfigad'Q,/avk. Pour un conduit avec rapport de forme unité, une structure
compliquée est observée quand croit le paramétre dynamique. Une configuration stable, symétrique a deux
cellules, observée pour R allant jusqu’a 4400, conduit 4 un régime périodique pour R atteignant 5400, puis
i un régime chaotique pour un domaine étroit de R et & un retour & une solution stable & R = 5800.
Lorsque 7 croit jusqu’a 8, on observe plusieurs solutions d"2tat permanent. La transition vers la convection
oscillatoire se produit pour une valeur qui anticipe lorsque y augmente. Aucune des solutions oscillatoires
n’est symétrique autour de la ligne centrale.

NICHT-STATIONARE KONVEKTION IN GESATTIGTEN POROSEN SCHICHTEN MIT
INNEREN WARMEQUELLEN

Zusammenfassung—Es wird das zweidimensionale, zeitlich verinderliche Verhalten des konvektiven
Wirmeiibergangs in porosen Rechteck-Kanilen untersucht. Die pordse Struktur ist mit einem fluiden Stoff
gesdttigt und gleichzeitig von innen beheizt. In fritheren Arbeiten wurde die Vielfalt von Strémungsformen
im stationdren Zustand untersucht. Nun wird der Entstehung dieser stationdren Zustiinde nachgegangen.
In einigen Fillen ergeben sich dabei Oszillationen. Die Struktur der Lésung wird von zwei Parametern
bestimmt, dem Seitenverhilinis des Kanals y = b/a und der Rayieigh-Zahl R = Kfgad'(Q,/avk. In einem
Kanal mit y = 1 ergibt sich beim Anwachsen der dynamischen Parameter eine komplizierte Losung. Fir
R < 4400 zeigt sich eine stationdre symmetrische Zweizellenstrukiur, fiir grdBere Rayleigh-Zahlen ergibt
sich zundchst ein periodischer Bereich (R < 5400), dann ein eng begrenzter chaotischer Bereich und
schlieBlich ab R = 5800 wieder ein stationdrer Bereich. Erh6ht man das Seitenverhiltnis bis auf y = 8, so
zeigen sich einige stationdre Mehrfachlésungen. Der Ubergang zu oszillierenden Konvektionsstrdmungen
tritt mit steigendem y bei immer kleineren Werten von y auf. Keine der Losungen mit Oszillationen ist
symmetrisch beziiglich der Mittellinie.

HECTALUVIOHAPHAS KOHBEKLIHA B HACBIIMEHHBIX XHAKOCTBIO TTOPUCTHIX
CJIOAX C BHYTPEHHHMH NCTOYHHKAMMH TEIUIA

ASROTMINR~—AHAUTHIAPYETCS IBYMCPHBIA HECTANMOHADHEI XOHBEXTHBHLI TEIIOMEPEHOC B NOPHCTHIX
APAMOYTO/LHLX 38MOHCHHMX KHAKOCTRIO KaHANAX ¢ DABHOMEDHIIM BHYTPCHHEM TeIIOBAICICHACM.
B pance punonmessnx paloTax HCCACAOBRNHCH CTAUHOHAPHKE HEONHOIHATHMIC XAPAKTCPHCTHKE
Teyenns. B Hactomnell pabore maysaeTcd BHIXON HE TaxHe CTANKOHAPHMC COCTOANHR, B HexoTOpRIX
cayvasx saGmonancs ycroibnsnit xoneSarempinifl pexum. CTPYKTYpR PEUICHHR ONPEACANETCR OABYMR
DapaMeTpPaMH: OTHOLICHREM CTOPOH KaHana, ¥ == bfa, n wucnomM Panes, R = KBgad'Q javk. lns xanana
C OTHOWICHHEM CTOPOH, PABHWM COMHHLC, OHi# YCHOXKHSACTCH C POCTOM AMHAMHEYCCKOIO Napamerpa.
Ycroiiuunas, CHMMCTPHIHAN ABYXAYCHCTAs KapTuHa, HabmoRaeMas npu 3uaveHuax R < 4400, ycrynaer
MECTO NEPHOIAYECKOMY DEXHMY TIDH 3HAYCHANX R < 5400, 32TeM X20THYHOMY PEXHMY 8 YIKOM JHana-
3osic 3naucnkit R. fIpu R = 5800 BPOECXCAHT BO3BPAT X CTAUHOHAPHOMY DeIiCHHIO, { VBE/HICHHEM 7
710 8 sabmonacTCs HECKOMBKO REONO3HATHLIX CTatpMoRapHsx pewennl, C pocToMm y nepexon K xoneba-
TEIbHOMY KOHBCKTHBHOMY PCXHMY HPOHCXORHT P MeHBIIKX 3Havenusx R. Hu oaxo ®3 pewsennil ans
x0s1e0aTENLHOTO PEXHMR HE ABJIACTCA CHMMETPHYHBIM OTHOCHTE/NILHO ICHTPAILHOMN THHHIY.
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